
+,

UCRL-ID-120M4 Rev 1

PDDP, A Data Parallel Programming Model

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor the University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or the University of California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (615) 576-8401, FTS 626-8401

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161

PDDP, A Data Parallel Programming Model*

Karen H. Warren
LawrenceLivermoreNational Laboratory

Livermore, California94551

....
. . Abstract: PDDP;the P@rallel Data~Distribution” ”Pre-

processor,. ti a data parallel programming model fdr
distributed” memory parallel computers. PDDP im-
plements High Performance Fortran compatible data
distribution directives and parallelism expressed by
the use of Fortrap 90 array syntax, the FORALL state-
ment, and the WERE construct. Dktributed data. ob-
jects belong to a global name space; other data objects
are treated as local and replicated on each processor.
PDDP allows the user to program in a shared-memory
style and generates codes that are portable to a variety
of parallel machines. For interprocessor communicw
tion, PDDP uses the fastest communication primitives
“on each platform.

1 Introduction

Psmllel programming languages have traditionally
been complex and architecture dependent. All but
the simplest message passing system preclude portw
bility. Message passing itself has been described as the
assembly language of parallel computers.

In 1992, members of the Massively Parallel Comput-
ing Initiative project at Lawrence Livermore National
Laboratory (LLNL) proposed writing an experimen-
tal translator that would allow the user to code in a
high-level Fortran-based SPMD language. The result-
ing code would make efficient use of MIMD computers
with non-uniformly accessible memories. The project
goals were to examine the technology involved and to
investigate the merits of such a language, including
whether such an architecture-independent language
could indeed be used efficiently on any parallel com-
puter with distributed memory. A valuable additional
benefit for both implementors and users would be to
gain experience in parallel processing with a high-level
programming model.

In this paper, we present the resulting language

● Workperformedunder the auspices of the U.S. Department
of Energy by the Lawrence UlvermoreNational Laboratory un-
der contract No. W-74M-Eng-48.

model, .P~IIP, the Paralle~.@ta Distribution Prepro- “
ceaaor. We present the synt= and sernantica of PDDP,
describe its implementation, discuss portability issues,
and present data on its performance.

2 Background

PDDP is a hybrid of PFP [l]i a Parallel Fortran Pre-
processor used at LLNL, and Fortran D [2], a research
compiler from Rice University. Fortran D provides
an extensive set of declarations for distributing data
across processor memories and also serves as a base
for the HPF [3] distribution directives. Over the past
two years, the High Performance Fortran Forum has
focused on the need for a huh-level Fortran paral-
lel progr amming’ ~del. The resulting HPF language
specification is a published model ready for implemen-
tation [3]. Because PDDP contains a subset of HPF,
PDDP codes are easily converted to HPF.

Its other predeceaaor, PFP, is a task-oriented paral-
lel Fortran programming language. In the PFP pro-
grarmning model, all of the processors, requested at
run-time and referred to as a team, enter the main
routine in parallel. The user directs this team through
the application with the option of dividing the team
into subteams to perform tasks in parallel. PFP offers
the familiar shared-memory programming model ele-
ments, including barriers and shared and ptiuate stor-
age attributes for variables. In a similar manner, all
of the processors requested at run-time execute each
statement of a PDDP code except for master blocks
and parallel code segments. The processors execute
the code statements, in a semi-synchronous manner,
uninhibited by implicit synchronization in any of the
constructs. PFP provides an explicit synchronization
tool, a barrier statement. Currently, PDDP do= not
implement team splitting for parallel tasks, rather par-
allelism is expressed in the HPF FORALL;the Fortran
90 array syntax, and UHEREstatments.

3 PDDP Syntax

PDDP consists of a one pass paraer.translator and a

run-time library. The parser accepts a superaet of
FORTRAN 77 statements. For each source statement,
the parser builds a parse tree used to generate FOR-
TRAN 77 code. User declarations inclyde a subset of
HPF DISTRIBUTE, TEMPLATE,and ALIGNspecification
directives. The parser builds a symbol table of de-
clared scalars, arrays, distributions, common blocks,
and subroutines. For array and distribution declarti

~ tions, it records the number of dimensions and extents.
It recognizes array-slice and whole-array syntax aa well
aa individual distributed array accesses. It recognizes
distributed arrays used in subroutine arguments and
common statements. The use of Fortran 90 [4] ar-
ray syntax, the UHEREconstruct, and the HPF FORALL
statement imply parallel execution by the members of
the team.

The PDDP parser recognizes the following HPF dis-
tribution specification dlrectivea:

TEHPLATE
DISTRIBUTE
ALIGli

Together they indicate the mapping of the data to the
processor memories. An abstract array is first declared
using the TEMPLATEstatement. It is partitioned among
the processors using the DISTRIB~ statement along
with a HPF data distribution type for each dimension:

● BLOCKplaces successive array elements on the

same processor, moving to the next processor
when the block size, equal to the extent divided
by the number of processors, has been used up.

● CYCLICcauses successive elements of the array to
be placed on successive processors in the system,
wrapping around after the last processor.

● The degenerate distribution “*” leaves the “entire
dimension on a singie processor.

Actual arrays are associated with the abstract tem-
plate using the ALIGli statement.

Distributed arrays are globally accessible and are
distributed across the processor memory regions. For
communication purposes, PDDP also provides global
objects that are not distributed but may be accessed
by all processors. These are referred to as ‘shared-
only” objects; their names do not occur in ALIGNstate-
ments. There are two PDDP storage CISSSmodifiers:

shared
private

The shared moditler must be used in all declarations
of distributed and shared-only objects. By default,
non-distributed objects, or those declared using the
attribute, private, are replicated in local memories.

To indicate execution by only one processor, the
user places statements within the following construct:

lIASTBR
EIJDHASTBR

To. iyn~hronize the team ,o~ processors, the
.

,.. $. “
BARRIiR ““

., .’.
,.

statement is available.
PDDP recognizes the Fortran 90 UHEREconstruct

with an optional ELSEWHERE:

WIEREiogical-army-expression
assignment statement

ELSEUEERE
assignment statement

EHDUHERB

The PDDP FORALLstatement is similar to the HPF
FORALL. It takes the form

FORALL (indez-specifications~
scalar-mask-expression])
assignment-statement

where indez-spccijicaiions takes the form.

indez-name = subscript : subscript [: stn”de]

FORALLmay be used for a scatter operation if the
expression used to designate the resulting location is
entirely local. Foi example, in the following st atement,
index (i), must be a local array:

FORALL (i = 1: 100) (x(index(i)) = i**2

PDDP recognizes the Fortran 90 syntax for the
global reduction functions max, rein, sum, product,
any, all. For each, it generates inline code that causes
each processor to calculate its local result and store it
in a shared-only array. After a barrier, processor O
calculates the result aa a global scalar. Each proces-
sor then makes a local copy. PDDP also recognizes
the cshift function. Inline coding restricts the user
to one reduction per statement.

A PDDP code converts easily to HPF. The pro-
grammer should preface mast er, endmaster, and
barrier statements with the column 1 tag “CPDDP$”
so that HPF will ignore them. The shared and
private attributes used in declarations can easily be
removed with the use of macros. Then HPF will com-
pile the PDDP source code.

‘f

4 PDDP Semantics

Generated code consists of FOIK4XAN 77 statements.
PDDP translates eWh distribution and TElfPL4TEdec-
laration into a call to a library routine that assigns to
the distribution an ID tag and writes a local table of

the necessary information. Distributed arrays must
be dynamically allocated on the local heap. Shared-
only arrays used as subroutine arguments or in com-
mon statements must also be allocated. For each

“ diatribuqd,.airayi PDDP. translates tpe appropriate
.“ . &LOCATE statement executed.by each. processor into

calls to library routines. These routines give the array
an ID tag, allocate the appropriate amount of local
memory, and build a local database linking the array
to. its distribution information and to an address map.
The address map gives the starting address of the
memory allocated in each processor’s memory. The
processors use these addressee for requesting remote
data (see Table 1).

Table 1. Array Database

Array Data
ARRAY TAG
DISTRIBUTION TAG
number bytee/element
rank
global bounds
local bounds
ADDRESS MAP PTR

Distribution

DISTRJB TAG
rank
extent/din
distrib type/dim
no. procs/dim

ADDRESS MAP
Proc I Ad dress
o
1
2
3
4
...

0XOO0120
0XOOO040
0XOO0220
0XOO0120
...

PDDP codes use the “owner-computes” rule for par-
allel execution of assignment statements: the owner of
the left-hand side element executes the aezignment for
that element. PDDP initially assumes that the right
hand side is remote; however, it will not issue a get on
distributed-memory machines if the processor number
of the requested address is the same as the requesting
processor. Generated declarations include the pointers
and variables needed by PDDP to express a Fortran
90 array statement as do loops whose bounds are the
indices for the local portion of the lefkhand side array.

There is no restriction to the number of seven poesi-
ble dimensions that can be distributed or the extent
of any distributed dimension. For multidimensional
left-hand side arrays, the do loops are nested with the
order going from the left to the right-most dimension.

Because the left-hand side owner is determined at
run-time, PDDP allows dynamic array sizes and vary-
ing numbers of processors. For a left-hand side scalar
reference to a distributed object, PDDP simply inserts
a call to routines that determine the owning processor.
Only the owning proces& executes the statement. :

. . Note that th~- is ~ubstantiilly different from a scalar ““
reference to a non-dis~ributed data item. In the first.
case, the statement is executed via owner-wmputes.
In the latter case, all team members execute the state-
ment. The user must be careful with statements that
contain data dependency between left- and right-hand
sides.

Subroutine linkage in PDDP ensures consistency
across subroutine boundaries. With the exception of
local routines (see Section 5) j array slices are not al-
lowed as arguments in subroutine calls. To psss entire
distributed arrays to other modules, PDDP recognizes
the use of whole array syntax used in subroutine calls
or in common statements. The called subroutine must
align a distributed argument to a template with the
same distribution ss specified in the calling routine.
Automatic redistribution on subroutine entry is not
supported. Rather than sending a valid address as
the argument to a routine, PDDP actually pasees the
ID tag associated with the array. (The tag is created
in the allocation process.) Similarly, it is the ID tag
that is actually used in a common block. In the re-
ceiving routine, the ID tag allows the module to access
information on the data object by using the run-time
support routines (see Section 5). The tag is selected so
as to cause a fault if referenced without proper decl~
ration and query of the run-time routines. This helps
to reduce the number of errors that can be made by
new users.

4.1 Optimizations

The PDDP parser recognizes matching array syn-
tax and distribution for left- and right-hand expres-
sions and avoids the time-consuming calculation of the
owner. It also avoids divisions involving a stride of
1. If the rank of the left-hand and right hand arrays
are unequal and the extra dimensions have a degener-
ate distribution, the parser also omits generating code
that performs calculation of the owner.

Because PDDP is a source-to-source language trans-
lator, it is limited in the range of possible optirniza-

3

tions. It is dependent on the backend compiler opti-

mizer for many performance improvements.

5 Run-time Library

As Nitzberg and Lo [5] point out, a useful distributed
shared-memory system must automatically transform
shared-memory access into interproceza communica-
tion. To achieve this, it is necessary for each proceeaor
to haye knowledge of the mappings. of the distributed
arrays so that non-local memory, may. Fe &+eased and
the owner of array elements may be determined. As
mentioned above, the PDDP parser generates calls to
the run-time library routinea that build and access
linked tables that make up a local database. The num-
ber of processors is a run-time parameter. The data
is used to determine the run-time owner, the bounds
for the generated do loops, and the location of each
right-hand-side distributed object in terms of proce~
zor number and offset fkom the starting address on
that processor

Given the global iteration set specified by the user
in array syntax and the knowledge of the resident el-
ements from the database, PDDP uses Euclid’s ex-
tended algorithm [6] to calculate the intersection, a
set of local loop indices for a processor. For block
distribution, the run-time module takea shortcuts in
calculation of the owner. The local array address map
allows PDDP to express the actual assignment state-
ment in terms of pointers and offsets, and optional
processor numbers for the right hand side.

To demonstrate the use of the database and run-
time libraries, consider the following PDDP code. Dif-
ferent distribution are used on left- and right-hand
sidee to demonstrate the use of the library:

integer nx
real x(nx), y(nx)
template t 1 (nx)
distribute t 1 (block)
align x with tl
template t2(nx)
distribute t2(cyclic)
align y with t2

x= Y

Below is the PDDP

point er
point er
integer
integer

(ptrO,

generated pseudo code:

local..mem)
(ptr_rh, remote-mem)

address_map-x(no_procs)
address_map- y (no_procs)

. . .
c loop setup:

ptro = addres sJap-X (myproc)
lo.indx = 1
hi_indx = nx
stride = 1
call getJocal-indx(X_ id,

> lo-indx, hi_indx, stride)
c lo-indx, hijndx, stride are now local bounds

‘“stride_rh T stride
.-”:lo@x-rh”= “lo-indx . “

“ dca irtdxl = loiindx, hi-t.k. stride . . “ “ “ --
. offset = ❑od(indxl, no-procs)

proc-no-rh = mod(lo-indx-rh, no-procs)
of fset-rh = div(lo_indx-rh, no-procs)
ptr-rh;; = address-map_Y (proc-no_rh)

c ass ignment statement:
local_mem(offset) =

> get (proc-no-rh, remote-mem(off-set-rh))
lo.indx_rh = lo_indx-rh + stride-rh

enddo

In addition to supplying routines that are called by
the generated code to calculate the owner, the run-
time library supplies routines for the user end debug-
ging tool to query the database. Inquiry functions give
the rank and global and local bounds of a distributed
array se well se the size in terms of the number of el-
ements of the local block of memory, and the starting
address of the local block of memory.

One of the library routines gives the starting address
and size of the 10CS.Iarray block and thus allows the
user to pass the local array section to local routinez.

Other routinea supply the processor number aid total
number of processors.

6 1/0

PDDP doee not offer parallel input/output. Write
and read statements must be placed within master,
endmast er blocks. and the variables used must either
be local or shared-only (i.e., not distributed). This is
obviously awkward and a definite weakness in most
high-level parallel programming languages.

7 User Interface

PDDP accepts files with the sufi . pddp, as well as
. PDDP, . F, . f and .0. PDDP passes options other’
than those directed to the parser on to the compiler
and loader [7]. For example:

4

pddp -o code.x -g obj. o code.pddp

In the above example, PDDP translates the file
code. pddp into code. f, which is passed to the FOIL
TRAN 77 compiler along with the option -g. Then
PDDP passes the resulting code. o along with obj. o
to the loader. The option -bsrrier may be used
to place a barrier after each array syntax statement
translation to test for race conditions. This puts
PDDP into a SIMD-like mode for array operations

. . only. . .“ .
. .

. . . .
. .

Use of the -nodist option causes PDDP to ignore:
data distributions statements, substituting shared-
memory declarations. The resulting code is a shared-

.
memory program that can be used for timing and de-
bugging.

Debuggers can display the generated FORTRAN 77
code or, in the case that the native compiler recognizes
lines beginning with “#[line)”, the debugger can dis-
play the original user code. Thiz was advantageous for
PDDP users on the BBN TC2000. They were able to
use the Totalview X-window debugger to easily debug
their PDDP codes. In either case, the run-time library
provides debugging functions to display the values of
a distributed array, array slice, or designated array el-
ement. Indices, bounds, and resident processor may
also be printed. To see the memory configuration of a
given distributed array, pddp.conf ig displays the pro-
cessor number, local lower and upper bounds, stride,
and distribution type of the entire array.

8 Portability

One of the most important characteristics of PDDP is
its portability. It is designed to generate code for any
parallel computer with shared memory or distributed
memory that hss the capability, either in hardware or
software, for one processor to request and receive data
located in another processor’s memory.

When porting PDDP to the various platforms, we
had to consider several issues besides the major one
of internodrd communication. These included the pe-
culiarities of the native FORTR,AN 77 compiler. For
example, cff 7 does not allow “#[line]” line direc-
tives.

For shared-memory machines, we had to decide how
to implement distributed memory, and on those m~
chines with only distributed memory we had to decide
how to implement shared-only memory.

Because all of the processors execute the entire code,
we had to arrange for all of the processors to be forked
and ready to execute the first statement.

8.1 Platforms

On architecture with hardware support for remote
memory references, such as the BBN TC2000 md
the CFU T3D, the task of writing a compiler, for the
data parallel programming model is greatly simplified.
With the owner-computes rule in effect, the processor
that handles the computation for a section of an al-
ray receives the remote data that it needs through
the use of remote memory reference support. The na-
ture of the compiler is that of ~ finite state, engine
that handles all of the “actions for the processor tl@ is
performing the work. To perform efficiently on other
architectures, PDDP uses the fastest available means
of communication to obtain remote data.

PDDP wss initially developed on the BBN TC2000,
a computer with distributed but globalij addressable
memory. PDDP currently is available on the CRI
T3D, the Meiko CS-2, and the SGI Power Challenge.

Each BBN processor had a 12 MB low-latency
“local” memory and thus resembled a distributed-
memory architecture. Each processor also contributed
4 MB to an interleaved shared-memory wherein suc-
cessive cache lines were placed on successive proces-
sors and wrapped around. Because there was a single
address space, it also res&mbled shared-memory. The
hardware handled non-local accesses, so there was no
need for explicit message passing. On the BBN, a run-
time library module called “niam” started first; this
routine forked the necessary processors and then called
the user’s main program. When the main program re-
turned, %iam” terminated the other processors and
then itself exited.

On the T3D and Meiko CS-2, the system takes care
of starting up all of the requested processors. On these
two platforms, processor O serves as the resident of
shared-only objects. On the Meiko this is much less
efficient than the interleaved shared-memory on the
BBN.

Each node on the Meiko has 128 MB of memory.
The Meiko has a 70 MHz multistage fat tree intercon-
nect, an Elite. network switch, and an Elan commu-
nications processor. The Elite Switch is an eight-way
crossbar switch allowing, input/output pairing with-
out contention. Usable bandwidth is 50 MB/s/link
in each direction. To read remote data, PDDP uses
fetch from the Elan Widget Library. The Elan Wid-
get communications library views the address spaces
of processors ss distributed global memory and ex-
plicitly addresses non-local memory by network DMA
operations.

Memory on the CR.I T3D is globally accessible and
physically distributed, 64 MB per processor. Remote

5

memory referencing is done with a replicated virtual
memory address space and separate tracking of proces-
sor indices. The 128 processors of the T3D are linked
with a 3D torus communications network capable of
low-latency data transfera of over 140 MB/aec node to
node. Peak per processor performance is 150 Mflops.
In a manner similar to PDDP, the CRI data paral-
lel programming model, CRAFT [8], allows the user
to view the distributed memory as logically shared
and sets the default storage type to private. . How;
ever, CRAFT restricts the user tQ powers of two” in
the distributed .dimensiona, (h. the T3D, PDDP all.
locates memory cm the shared-memory heap ‘arid uses
sluaem-get from the SHMEM library to access right
hand side data. shmenqet does a blocking transfer
of data from the remote address into the local ad-
dress using remote loads. It would be advantageous
to do a put instead, but that is not compatible with
the owner-computes rule. To avoid segmentation vi-
lation errors when accessing remote addresses on the
T3D, we allocate the same amount of memory on each
processor for a distributed array regardless of whether
it is used.

Although the PDDP model is directed to non-
uniform access distributed-memory architectures,
PDDP can also be used on computers with a single
shared memory. PDDP wss ported to the SGI com-
puter to provide a developmental platform for maa-
sively parallel computer users. on the SGI, PDDP
forks the desired number of processors, which executes
the code as a team. It ignores the shared and private
attributes and translates the use of Fortran 90 syntsx,
FORALL,and WHEREstatements, into do loops in which
the indices are interleaved among the processors in a
wrap around manner.

8.2 Performance

To demonstrate the performance of PDDP, we present
results from four codes in our benchmarking suite (see
Tables 2,3, 4, and 5). We include times from the CRI
CRAFT model and the Portland Group HPF, version
1.1-1. The Gaussian non-pivoting elimination solver
uses a CYCLIC distribution for the second dimension
of the matrix. The NAS benchmark implicit PDE
solver, LU, for 5 coupled, non-linear partial differential
equations uses a BLOCKdistribution in the last two
dimensions. The highly parallel shallow water code
ia a two dimensional finite difference algorithm on a
512 x 512 grid. The second dimension is distributed in
a blockwise manner across the processors. The data
in the quantum lattice gauge code are four and six
dimensional arrays of complex variablea representing

6

3 x 3 arrays in four-dimensional spacel The arrays are
d~tributed BLOCK, BLOCK, BLOCK in the three right-
most dimensions. A large portion of the calculation is
the multiplication of 3 x 3 matrices.

In the following tablea, “N” indicates the number of
processors.

Table 2. Gaussian Elimination Algorithm
(non-pivoting) 1024 x 1024

Time (aec]
T3D ‘ . T3D T3D .MEIK() MEIKO

N PDDP CRAFT PVM . P.DDP PGHPF “’

16 48 22 17 85’ 678
32 32 17 12 173 1160
64 26 16 12 353 2780

128 23 ’19 12

Table 3. Shallow Water (512 x 512) 50 iterations

. ..
.

I TDI

Time (see)
3 T3D I MEIKO I MEIKO

N PDDP CRAFT PDDP PGHPF
16 30.0 9.3 82 13
32 16.7 4.8 64 11
64 10.2 2.5 54 15

128 7.0 1.4 47

Table 4. LU (64x 64)

Time (see)
T3D I MEIKO

N
16
32
64

128
256

PDDP
4480
2367
1235
773
421

PDDP
9285
5811
3635
2646

Table 5. Quantum Lattice Gauge Code
1 Loop for 2048 elements

L
Tim

T3D
N PDDP
2 150.6
4

8
16
32
64

79.5
43.6
24.3

21.
11.

aMwiIKO
PDDP

194.0
139.0
114.8
89.8
130.
123.

On platforms that do not efficiently support remote
memory referencing, e.g., the Meiko, latency of short
messages can be a limiting factor. The read band-
width on the T3D is 2 ns versus 30 ns on the Meiko.

On a platform such as the Meiko, if one cannot repack-
age communications into long messages and transmit
them prior to need, performance suffers. To date, this
prefetch has been a task treated by hand in programs
using the message passing programming model. In the
case of high-level languages, it would be advantageous
to accomplish this transparently under control of the
compiler. William Carlson from SRC has recently de-
veloped an AC compiler [9] for the T3D that does a
prefetch and shows good results.

Under the control of PDDP, processors act ss a vec-. .
tor’unit,for the duratiori ~ the loop and consequently. .“....*
would greatly benefit from having the performance
characteristics of a conventional vector processor.

9 Conclusions

It is evident from our numbers that some form of hard-
ware support for accessing remote memory is neces-
sary for good performance from a high-level parallel
programming language. If this support is not present,
then some form of a prefetch mechanism is necessary.
PDDP is unique in its utilization of hardware support
for accessing remote addresses. Implementation of a
shared memory programming style itself has proven
to be a fundamental feature of massively parallel pro-
gramming environments. Vendors are striving to place
this functionality in the hardware itself.

In evaluating a model such as PDDP, we need to
consider the effort required to” write a code in a lan-
guage such as PDDP and compare it to that of port-
ing a code written in message passing, analyzing its
performance on the target architecture, and tuning it
in some cases via assembly language to obtain reason-
able performance. These latter tasks take considerable
time and effort and require in-depth knowledge of the
target architecture.

A reasonable fraction of this performance can be
achieved by using a high-level progr amrning model
such as PDDP. While the code does not perform as
well as vendor specialized software, scientists prefer
the portability trade-off gained. PDDP usera can
attain reasonable performance with considerably less
work than is required today on massively parallel sys-
tems. In addition, portability gives application pro-
grammers the benefit of single-source maintenance.

PDDP is a research vehicle and a simple language.
Nevertheless, we have shown that it is possible to
program codes for parallel computers in a high-level
language, avoiding the complexities of message paas-
ing and achieving satisfactory performance with one
source code on multiple parallel platforms.

10 Acknowledgements

Other contributors to the PDDP project have been
Brent Gorda, Andrew Ingalls, James Stichnoth, Alan
Riddle, Bor Chan, and Paul Lu.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

7

Karen H. Warren, Brent Gorda, and Eugene D.
Brooks III, Progmmming in PFP, Lawrence .Llver-
more Nat@nal I.aboratoiy, Livermoze, CA, UCR~

MA-107028 ;I991. ‘.” . .

G. Fox, S. Hiranandani, K. Kennedy, C Koelbel,
U. Kremer, C. Tseng, and M. Wu, Fortran D Lan-
guage Specification, Dept. of Computer Science,

Rice University, Technical Report TR90-141, De-
cember, 1990.

High Performance Fortran Forum, High Perfor-
mance Fortran Language Specification, Rice Uni-
versity, Houston, Texas, Version 1.1, November 10,
1994.

1S0. Fortmn 90, May 1991.~SO/IEC 1539:1991
(E)].

Bill Nitzberg and Virginia Lo, “Distributed Shared
Memory: A Survey of Issues and Algorithm”,
Computer, August 1991,pp. 52-60.

Donald E. Knuth, The Art of Computer Pro-
gramming, Volume l/Fundamentrd Algorithms,
Addison-Wesley, 1973.

Karen Warren, “PDDP: A Parallel Data Distribu-
tion Preprocessor”, Lawrence Livermore National
Laboratory, Livermore, CA, pp. 42-51 in MPCI
Yearly Report 1992: Harnessing the Killer Micro,
UCRL-ID-107O22-1992.

Cray MPP Fortran Reference Manual, Cray Re-
search, Inc. SR-2504 6.1, 1994.

William Carlson and Jesse Draper, “Distributed
Data Access in AC,” Bowie, MD, IDA Supercom-
puting Research Center, December 14, 1994.

